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ABSTRACT

This paper presents a technique for quantifying the wear or damage of gear teeth in a transmission system.

The procedure developed in this study can be applied as a part of either an onboard machine health-

monitoring system or a health diagnostic system used during regular maintenance. As the developed

methodology is based on analysis of gearbox vibration under normal operating conditions, no shutdown or

special modification of operating parameters is required during the diagnostic process.
The process of quantifying the wear or damage of gear teeth requires a set of measured vibration data and a

model of the gear mesh dynamics. An optimization problem is formulated to determine the profile of a

time-varying mesh stiffness parameter for which the model output approximates the measured data. The

resulting stiffness profile is then related to the level of gear tooth wear or damage.

The procedure was applied to a data set generated artificially and to another obtained experimentally from a

spiral bevel gear test rig. The results demonstrate the utility of the procedure as part of an overall health-

monitoring system.

Keywords: Health monitoring; Gears; Maintenance; Wigner-Ville distribution; Time-frequency analysis;

Optimal tracking

1. INTRODUCTION

In the last two decades, with demands for higher operating speeds and greater load capacity, premature

failures in high-performance turbomachinery have often resulted in enormous financial losses and, at times,

catastrophic consequences. In aeronautical applications, where both weight and efficiency are pushed to their

design limits, the prevention and management of premature equipment failures is a vital part of the

maintenance program. Current onboard condition-monitoring systems for gas turbine engines often fail to

provide sufficient time between warning and failure for safety procedures to be implemented. On the other
hand, inaccurate interpretation of operating conditions may result in false alarms and unnecessary repairs and

downtime. The early detection of incipient failure in a mechanical system is of great practical importance as

it permits scheduled inspections without costly shutdowns and indicates the urgency and locations for repair

before a system incurs catastrophic failure.
Some success has been achieved in identifying damage in a gear transmission system by using a joint

time-frequency analysis known as the Wigner-Ville distribution (WVD) technique (Boashash and Black,

1987; Choy et al., 1994a,b; Claasen and Mecklenbrauker, 1980). The approach is to use statistical pattern

recognition to match the WVD signature patterns of damaged gears with standard patterns stored in a data
base. Although the WVD technique is useful for determining the type and location of the damage, it is not

much help in quantifying the level of damage. Damage quantification would logically be the next step in

failure prediction; however, no explicit attempts at damage quantification have previously appeared in the

literature.

This paper presents a new technique for processing vibration data to quantify the level of damage in a gear

transmission system. The technique consists of a nonlinear numerical optimization in the form of an

"optimal tracking" problem (Sage, 1968; Lewis, 1986). The optimization uses a dynamic model of the

gear mesh and forms an estimate of the time-varying mesh stiffness that best corresponds to the given set of
vibration data. The utility of the technique relies on the relationship between the wear or damage of a gear



toothand the change in stiffness of the mesh during a given tooth pass cycle. An analysis of this

relationship demonstrates that the perturbation of the stiffness function from the nominal profile can be

used to quantify the level of damage.

The optimal tracking technique for estimating the perturbation of the mesh stiffness was tested in two

settings. First, it was tested on a set of fictitious data generated by computer simulation of a one-degree-of-

freedom mechanical system with time-varying stiffness. The solution of the optimal tracking problem

matched very closely the actual stiffness profile used in the model generating the data. Then, the technique

was tested on a set of experimental data from a gear test rig, but still assuming the one-degree-of-freedom

model. Despite the simplicity of the model the stiffness profile obtained was shown to be useful in

correlating to the level of damage of the gear transmission system.
The paper is organized as follows: Section 2 presents the system model and formulates the optimal

tracking problem. Section 3 outlines the numerical solution procedure for the nonlinear optimization.

Section 4 presents and interprets the results of the optimization and discusses the next steps to be taken in

developing a comprehensive failure-prediction procedure.

2. OPTIMAL TRACKING PROBLEM

2.1 SYSTEM MODEL

The system considered in this study consisted of a small pinion in mesh with a larger gear. A simple

model of this system has the two gear masses connected by a spring and a damper. The larger gear is much

heavier than the pinion; hence, it is assumed to be rigid, so that all relative motion between the two is

attributed to the motion of the pinion. Then, the equation of motion of the pinion takes the form

trdi + cx + k(t)x = O, (1)

where m is the mass of the pinion and k(t) and c are the stiffness and damping of the mesh. The mesh

stiffness is not constant but is nominally a periodic function of the gear angle, with each period

corresponding to one tooth pass. The high points on the periodic stiffness function correspond to gear

angles where two pairs of gear teeth are in contact, and the low points correspond to angles where only one

pair is in contact.
It has been found in experiments on gearbox vibrations (Choy et al., 1994b, 1995) that the gear mesh

stiffness changes with the wear, pitting, or fracture of the gear teeth. Such changes in the gear mesh

stiffness inevitably lead to changes in the vibration signatures of the mechanical system. The objective of

the optimal tracking procedure developed in this study is to reconstruct the true stiffness profile for a

damaged gear tooth from the measured vibration. That is, the objective is to determine the function k(t) that

would result in the measured vibration according to the system model (1).

The true stiffness profile can be expressed as the sum of a constant (time averaged) component, a nominal

periodic component, and a perturbation resulting from gear wear or damage. Accordingly, the system model

(1) is written as

m_ + c._ + [kaye - kperiodic (t)- kperturb(t)]x = O, (2)

or

)t + c Jz+ ,(-22x = u(t)x, (3)
m

where £22 = kave/m and u(t) represents the total time-varying component of the stiffness divided by the

pinion mass. By defining the variables

X l = X, X2 = x, (4)
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thesystemmodelcanbewritteninthestate-variableform

:q= _Cmxl-'02x2+u(t)x2

with the given initial conditions

"_2 = Xl

(5)

xl (t0) = x0' x2 (to) = x0' (6)

2.2 OPTIMIZATION PROBLEM

Suppose that a data set corresponding to the vibration of the pinion is collected over the interval [to,t/].

Let the function describing the data set be denoted as J2 (t), since it corresponds to the modeled variable

x 2 (t). The objective is to determine a reasonable time-varying stiffness component u(t) for which the model

output x 2 (t) approximates the measured data _2 (t).

A diagram depicting the functional objective is shown in Fig. l(a). In the figure u(t) is depicted as an

input to be chosen so that the error e(t) will be small for all time. Note that this problem has the form of a

tracking problem, where the control input of a system is designed so that the system output follows a

prescribed reference function. Such a problem may be approached by using the standard techniques of

optimal control theory (Sage, 1968; Lewis, 1986). In particular, the "design" of a suitable function u(t)

may be achieved by minimizing the quadratic cost functional

1 2
t/

i+7
to

where ill, fiE, and flf are cost-function weighting coefficients. This form of the cost functional penalizes the

energy in the error between the modeled output and the measured data. It also penalizes the use of too large

a stiffness perturbation function in order to avoid singularity in the solution.
In the optimal tracking problem the system dynamic equations (5) are treated as equality constraints

imposed in the optimization of the cost (7). As such, they are appended to the cost function by using time-

varying Lagrange multipliers gl(t) and 22(0. These Lagrange multipliers are themselves governed by

differential equations called the costate equations. The costate equations together with the state equations of

the system model form a two-point boundary value problem (TPBVP) (Sage, 1968; Lewis, 1986). The

TPBVP equations are

(State equations)

c
-_l = -- -- Xl - "Q2x2 + u(t)x2

m

J:2 = Xl

(8)



J_l = --:t2 + C Zl
m

(Costate equations) (9)

_'2 = "('22)_1- U(t):l'l - _l[X2 (t) - "r2 (t)]

(Stationaritycondition) 0 = _lX2 +/_2u(t) (10)

(Endpoint conditions) x1(to)=X O, x2(to)= X0 (11)

:Ll(tf )--O, _2(tf)=_f[x2(tf)-_2(tf)]. (12)

The TPBVP (8-12) represents a set of necessary conditions for u(t) to be the solution of the optimal

tracking problem. The TPBVP consists of a set of four coupled differential equations (8-9), together with

an algebraic relation (10), and some endpoint conditions (11-12) at both to and tt Notice that the TPBVP is
nonlinear: the unknown function u(t) multiplies other independent variables in the differential equations.

3. NUMERICAL SOLUTION PROCEDURE

The nonlinear TPBVP (8-12) is solved by an iterative procedure. A complete and general derivation of the

procedure is given in Sage (1968) and Dyer and McReynolds (1970). Some of the salient points are outlined
below for convenience.

3.1 SUCCESSIVE SWEEP METHOD

Solving the nonlinear TPBVP requires an iterative method. Although several approaches are possible, a
common and useful one is to begin with an initial guess u°(t) and use it to integrate the nonlinear state

equations (8) forward in time starting from the initial conditions (11) to determine the nominal state

functions x°(t) and x°(t). Then, starting from the final conditions (12), integrate the nonlinear costate

equations backward in time to determine the nominal costate functions Zl0(t) and )_(t). The nominal

functions u°(t), x°(t), x°(t), Zl°(t), and ),_(t) then satisfy all the TPBVP equations except the

stationarity condition (10).
The nominal state, costate, and input functions must be iteratively updated, so that they will eventually

satisfy all the nonlinear TPBVP equations, including the stationarity condition. Each update is

accomplished by solving a linearized version of the TPBVP. A standard method for doing this is known as

the sweep method, whereby a linear relationship between the state and costate functions is assumed. Then,

the linear TPBVP degenerates into a set of ordinary differential equations with endpoint conditions at the

final time only. These are solved by a straightforward numerical integration. In the case of the optimal

tracker these ordinary differential equations take the form of the coupled Riccati equations



x_

I 1 1 x_C --Pll __Q2 +u(t)- _l'lX2 +PlIPI2
Jbl2 = --raPI2 - P22 _2 _2

(13)

,_=-_,,,_[-_+_<,>-_,._1+,',__ _j

with endpoint conditions

Pll(tf) = Pl2(tf) = O, P22(tf) = fly,
(14)

together with the auxiliary linear equations

2 ) x2/ll :hi c+ Pll_ 2 -h2 - Plle'_'[XlX2 + fl2u(')]

x_] _,_i,_:-h_ -a_+u(,)-_ X,x_-p__j-_t_,,x_ +_,,(,)](p,_x_+X_)

(15)

with the endpoint conditions

ha(t/) = h2(ti ) = 0. (16)

Note that the x and _ variables in the differential equations (13) and (15) represent the given nominal

functions. (The zero superscripts have been omitted for convenience.) They are simply treated as time-

varying coefficients in the numerical integration of the differential equations. The solutions of

equations (13) and (15) are then used to compute the corrections to the nominal state, costate, and input

functions. This computation requires yet another numerical integration, this time of the linearized state

equations

2 1 -- PI2 "_- -- hi_,=_<,c+,.,, +_,__,_+,,_,_-_,x_ _+_[_,x_+_,_]
2 J L P2 _[ /"2 #"2

with the zero initial conditions

A._2 = Ax 1

Ax I (t o ) = Ax 2 (t o ) = 0.

Finally, the update of the nominal control is computed as

E.,,,=-.--I_,x_+_,_1-_'I_,_+x_(,_,,_,+,,,_ +,,,)].
P2"

(17)

(18)

(19)



where e is the step size, and the new nominal control is given by

u i+l (t) = ui(t) + Aui(t). (20)

(The superscripts i and i+1 denoting the iteration number have been reinserted in equation (20).) The

procedure is repeated until the nominal functions converge to a solution.

The real scalar e e [0,1] in equations (15), (17), and (19) is used as a "step size" parameter. Using a

smaller value of e tends to decrease the magnitudes of the corrections, thereby improving the stability of the

iterative procedure but slowing the convergence to the solution. Using a larger value of e has the opposite
effects.

3.2 NUMERICAL DETAILS

The choices of the cost-function weighting coefficients fib f12, and if are important for effective numerical

optimization. The parameter ]31 defines the penalty on the difference between the calculated and reference

vibration signals. Since the goal is to minimize the difference between the calculated and tracked vibration
signals, a large weighting coefficient tl should be chosen. The parameter i2 defines the penalty on the

function u(t). Generically speaking, t2 should impose a lighter penalty on u(t) than II imposes on the

tracking error. Note also that the choice of units has an effect on the appropriate relative sizes of il and fl'2.

In the examples studied the numerical values of u(t) are considerably larger in magnitude than those of a
reasonable vibration-signal error; therefore, even if equal weighting between error and control were desired,

fl'2 should be chosen to be considerably smaller than ill. An inappropriately large choice of the parameter ts

would make the cost function almost unchanged from one iteration to the next. Thus, a small constant

value was chosen for the parameter f12-The parameter if defines the penalty for the error at the final time.

If if is too small, a large vibration error at the final time will result.

By following these general guidelines the optimization algorithm described in the previous section was

realized in a computer program. The equations were integrated with a seventh-order Runge-Kutta-Fehlberg

method. A summary of the programming steps is given below (fig. l(b)):

0. Set i = 0 and take the initial guess u0(t) for the function u(t) to be zero.

1. Using the function ui(t) from the previous step, integrate the state equations (8) forward in time.

Calculate the resulting cost function ji.
2. Integrate the costate equations (9) backward in time.

3. Use the computed state and costate variables as time-varying coefficients in the integration of the

Riccati equations (13) along with the auxiliary equations (15) backward in time.

4. Integrate the linearized state equations (17) forward in time. Using the linearized stationarity condition

(19), calculate the correction Aui(t) to the nominal function ui(t) and hence the updated function

ui+l(t). Also, calculate the new cost function j/+l.

5. Make decisions about the continuation of the optimization procedure and the choice of the parameters:

a. If the difference between the calculated and tracked vibration signals is small, the optimization

procedure is finished.

b. If the difference ji+l _ j/< 0 is large enough, repeat from step 1.

c. If the difference ji+ 1 _ ji < 0 is too small, increase the weighting il and repeat from step 1.

d. IfJ i+1 > ji, repeat from step 1 using a smaller value of the step size e. If this is not successful,

increase the error weighting il and repeat from step 1.

Some comments should be made on step 5 of the numerical procedure. It was observed that for given

values of weighting coefficients and the step-size parameter the optimization procedure converges to some

value of the cost function. In this case the difference between the values of the cost functions ji+ 1 _ fi
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becomesnegligibleaftersomeiterations.Thismeansthatthecostassociatedwith thecontrolu(t) is

becoming dominant. Therefore, it makes sense to start a new iteration with an increased weight ]31 (i.e.,

imposing a higher penalty on the vibration error).

4. DISCUSSION OF RESULTS

To demonstrate the optimal tracking procedure described above, two numerical cases were used in this

study. The first case was a numerical experiment in which the tracker was applied to a set of vibration

signals generated numerically, assuming a given gear mesh stiffness profile. The mesh stiffness profile

evaluated by the optimal tracker was compared with the original stiffness used in generating the vibration

signal. Figure 2(a) shows the comparison between the vibration signal generated by a sinusoidal stiffness

and that simulated by the optimal tracker. As shown in the figure the two vibration signals were very
similar; the small difference between the two signals is given in Fig. 2(b). Figure 3(a) depicts the original

gear mesh stiffness used and the stiffness evaluated by using the optimal tracker; the difference between the
two stiffnesses is given in Fig. 3(b). The excellent agreement between the two stiffnesses in this numerical

experiment has confirmed the applicability of the optimal tracking procedure in evaluating system stiffness

changes from system vibration signals. However, this close resemblance between the generated and
simulated signals was partly due to the original time signals being smooth, continuous, and harmonic

without any substantial change in magnitude and phase over the gear revolution. To demonstrate the

generality and limitation of the developed procedure, a set of experimental data taken from a test rig was

used in the next case.
The second case was based on the experimental data obtained from the spiral bevel gear test rig shown in

Fig. 4. The primary purpose of this rig is to study the effects of gear tooth design, gear materials, and

lubrication types on the fatigue strength of aircraft-quality gears (Zakrajsek et al., 1994). Because spiral

bevel gears are used extensively in helicopter transmissions to transfer power between nonparallel

intersecting shafts, using this fatigue rig for diagnostic studies is extremely practical. Vibration data from
an accelerometer mounted on the pinion shaft bearing housing were captured by using a personal computer

with an analog-to-digital conversion board and an anti-aliasing filter. The 12-tooth test pinion and the 36-

tooth gear have the following characteristics: 0.5141 in pitch, 35 ° spiral angle, 1-in. face width, 90 ° shaft

angle, and 22.5 ° pressure angle. The pinion transmits 720 hp at a nominal speed of 14 400 rpm. The test

rig was started and stopped several times for gear damage inspection. The test was ended at 17.72

operational hours when a broken portion of a tooth was found visually during one of the shutdowns.

Figure 5(a) depicts the gear tooth after 6.5 hr of operation. Note that there is heavy surface pitting on one

gear tooth with minor pitting on the next tooth. Figure 5(b) shows the time domain averaging, the
frequency spectrum, and the joint time-frequency analysis using the Wigner-Ville distribution (WVD)

(Boashash and Black, 1987; Choy et al., 1994a,b, 1995; Claasen and Mechlenbrauker, 1980) of the

accelerometer signal at 6.5 hr (Choy et al., 1994a). Note that in Fig. 5(b) the time signal indicates a large

vibratory signal during the engagement of the sixth and seventh teeth (damaged teeth), but the frequency

spectrum, because of its averaging characteristics, shows very little change from the original signal (Choy
et al., 1994a). The WVD begins to show a pattern of shifting of the major frequency component (at a mesh

frequency of 2880 Hz) around the meshing of the sixth and seventh teeth. The WVD pattern in this case is

very similar to those resulting from a short-term amplitude and phase change of a vibration signal (Choy
et al., 1994a). Although it has been established by the authors in some previous publications (Choy

et al., 1994a, b, 1995) that such damage in the gear can be identified by the WVD pattern recognition

process, the level of the damage has not been addressed. A recent study by the authors has shown that wear
and surface pitting of the gear tooth usually will result in a phase shift in the stiffness profile, without any

significant change in the stiffness magnitude. Figure 6 shows the stiffness change in a gear mesh evaluated

(Boyd and Pike, 1985) from gear tooth surface profile variations. Note in Fig. 6(b) that increasing surface

profile variation increases the phase shift of the gear stiffness without changing the magnitude of the
stiffness.

Incorporating this constant gear mesh stiffness as an additional constraint, the optimal tracking procedure

was applied to the experimental vibration signal (obtained from the bevel gear test rig at 6.5 hr as shown in



Fig. 5) to evaluate the corresponding gear mesh stiffness. To better evaluate the gear mesh stiffness, the

time signal was filtered at a mesh frequency of 2880 Hz. Figure 7(a) shows the comparison between the

unfiltered experimental signal and the optimal tracker simulation, and Fig. 7(b) shows the comparison

between the filtered experimental signal and the Wacker-simulated signal. Note that because of the

substantial change of magnitude and phase of the time signal during the data acquisition period (one

revolution of the gear), the accuracy in the simulated vibration is not as good as that in the numerical

experiment (Fig. 2(a)). Figure 8 depicts the gear mesh stiffness evaluated by using the optimal tracker.

Note that in the evaluated stiffness considerable phase shifts at several gear teeth resulted in the large

variation in magnitude and phase of the vibration signal. At the location where pitting occurred (teeth 6 and

7) the phase shift of the stiffness was more pronounced. By using the results from the evaluated mesh
stiffness and the correlation of stiffness change with gear wear shown in Fig. 6(h), the gear damage can be
estimated.

5. CONCLUSIONS

This paper presents a unified approach to identifying and quantifying damage in a gear transmission

system. The conclusions from this study are as follows:

I. The application of the joint time-frequency technique called the Wigner-Ville distribution provides the

ability to identify the types and locations of the gear damage.

2. The optimal tracker developed in this paper provides a very reasonable estimate of the stiffness change

due to damage, which can be related to the level of gear damage.

3. For vibratory signals with large changes in magnitude and phase angle the accuracy of the simulated

signal from the optimal tracker may decrease.

4. For a more accurate evaluation of system mesh stiffness an optimal tracker for the complete dynamic

model of the system is needed.
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Figure 7,--Filtered and unfiltered experimental and tracker-simulated
vibration signals for spiral bevel gear at 6.5 hr. (a) Unfiltered. (b) Filtered.
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